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FOREWORD
The research described in this report, "The Application of the
Method of Quasilinearization to the Computation of Optimal Control, "
No. 67-49, by Garrett Paine, was carried out under the direction of
C.T. Leondes in the Department of Engineering, University of California,

Los Angeles.

One of the principal goals of this work was the development of the
method of quasilinearization so that it could be used as an effective com-
putational tool in the generation of optimal control. The generation of
optimal control is of special importance to advanced ballistic systems,
conventional aircraft systems problems, advanced space systems problems,

and numerous other important areas.

This research was supported by the U.S. Air Force Contract
F04701-68-C-0001, Advanced Targeting Study; AFOSR Contract 699-67,
Basic Controls and the National Aeronautics and Space Administration Con-
tract NsG 237-62 to the Institute of Geophysics and Inteplanetary Physics

of the University.

This report is based on the Doctor of Philosophy dissertation sub-

mitted by the author.
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CHAPTER 1
INTRODUCTION

[
[y
P!

ontrol Systems Theory and Optimization Techniques

Currently a large amount of effort is being devoted to the
optimization of control systems. The effort is usually directed
either towards the proof of fundamental properties of control sys-
tems, or, as in this dissertation, towards the improvement of

computational techniques.

Without improved computational techniques much of the
theory must go unused as its application to a real problem is un-

wieldy.

There are many ways in which an optimal control problem
can be formulated and solved: the method of steepest descents, the
method of second variations, dynamic programming, quasilineari-
zation, and others. Most have been applied to solve engineering

problems of sufficient difficulty to be considered significant.

The dissertation deals with the application of the method of
quasilinearization to the optimal control problem, and to the im-
provement of its applicability in problems where either the control
cannot be solved for explicitly, or where there are bounds on the
control. The method of quasilinearization is also called the

generalized Newton-Raphson method.

1.2 The Current Uses of Quasilinearization

Several authors have applied the method of quasilinearization
(QL) to a variety of problems. One of the earliest applications be-
longs to Hestenes, 1 Bellman, 2 and Kalaba, 3 who have shown con-

vergence proofs using the maximization operation, have employed




QL to solve a variety of simple, nonlinear differential equations.
McGi114’ S and Kenneth6 have shown convergence proofs using the
contraction mapping operation and have employed QL in the solution
of several simple nonlinear differential equations. McGill22 has
worked a simple bounded state space problem using the penalty

function approach.

12
Kopp and Moyer, 11 and McGill. have compared QL with
several other te'chniques and have used QL to solve some trajectory

analysis problems.

Sylvester and Meyer7’ 8 combined the method of quasilineari-
zation with a first order integration procedure and have used it to
solve some problems in mechanics and trajectory analysis. Longg' 10
has shown how to apply the method of QL where the final time is free

and has applied his results to several estimation problems.

The references above that are concerned with the application
of QL to the control problem either assume that the maximum
principle can be used to find the control explicitly so that the control
can be eliminated from the differential equations, or that continuous
variations about the control vector can be taken. Neither of these
approaches can handle the case of bounded control directly; instead,
Valentine's13 method must be used which results in an extra term
to be carried through the calculations. Kopp and Moyer11 have noted
difficulties in applying either the method of second variations or the

method of QL to solve problem's with bounded control,

This work is directed towards the development of techniques
that will facilitate the application of the method of QL to control
problems where bounds on the control exist, and where the final time
is free. Towards this end the convergence proofs of McGill and

Kenneth have been extended to cover bounded continuous control




directly by means of the addition of another term to QL. The work
of Long has been modified to provide more accurate integration while
preserving its usefulness in solving problems where the final time

is free.

1.3 The Scope of the Dissertation

The dissertation is directed towards the goals of formulating
the method of quasilinearization so that optimization problems can
be handled directly, and of showing that this is indeed so by means

of a non-trivial example.

In Chapter 2 the application of the method of quasilinearization
to the solution of a two point boundary value problem is discussed.
The technique by which unknown constants can be found is included
here. In particular it is shown how the period of integration with
respect to a dummy variable can be fixed by the addition of one

parameler even if the final time is free.

A quadratic convergence proof is given in Chapter 3. The
proof is an extension of that found in the literature as it allows

bounds on the control to be handled directly.

A method for extending the region over which the method
converges is detailed in Chapter 4. The theoretical advantage of the

extended method is shown.

In Chapter 5, the numerical techniques used to solve
practical problems are discussed. These techniques are applied to
the problems described below, and can form the basis for any

numerical application of the method of quasilinearization.

Chapter 6 and Chapter 7 cover the two numerical examples
used. In Chapter 6 the classical Brachistochrone is solved. Here

the solution is used to show that the solution converged much more



rapidly for the free time problem using the technique of Chapter 2
than that found in the literature. 6 And it is shown that Method 3 of
Chapter 4 extends the normal region of convergence. The
Brachistochrone is also used to examine the effects of a modified

integration scheme.

In Chapter 7 the general problem of determining the tra-
jectory of a reentering space vehicle to minimize heating is described.
Two cases are presented. The reentry vehicle problem is solved for
one case and is also used to show that the technique for handling

bounded control, discussed in Chapter 3, works well,

The conclusions and areas for further research are presented

in Chapter 8.

Hereafter the method of quasilinearization will be abbreviated
to the method of QL.




CHAPTER 2
THE METHOD OF QUASILINEARIZATION
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The method of QL is an iterative method for solving two
point boundary value problems governed by a system of nonlinear
ordinary first or second order differential equations. Here there
are two quantities to be satisfied, the differential equations and the
boundary values. In control problems there is a third quantity to
be satisfied: the Maximum Principle. Iterative techniques have
been built around satisfying one or two of these identically and then
iterating to satisfy the third.

For example, the methods of the second variation used by
Breakwell, Speyer and Bryson, 23 Kelley24 and Scharmackls’ 16
satisfy the differential equations, the Maximum Principle and some
of the boundary conditions exactly. The solution is then iterated
until the remaining boundary conditions are satisfied. In the method
of steepest descent the differential equations are satisfied exactly
but neither the Maximum Principle nor the boundary conditions are
satisfied. As the iterations proceed these are satisfied more and

more completely.

In the method of quasilinearization the boundary conditions
and the Maximum Principles are satisfied exactly. It must be kept
in mind that the Maximum Principle is applied along a trajectory that
is governed by the equations of quasilinearization, not by the state
equations. The differential equations are then satisfied more and
more nearly on each iteration. And if convergence occurs it is

+

quadratic.

e



The computational procedure of QL can be described simply.
A solution for an n dimensional system of first order differential
equations is desired. Without any loss of generality it is assumed
that half of the boundary conditions are specified at each end and

that n is even

y = 1y,
. (2.1)
¥ 0 =y, s y(T)=y; 5i=12,..0, 5
i i
4
Where y is the n vector J: , where Yo and Ye
: i i
Yn

i=1,..., % are the initial and final boundary conditions, and where
T, the final time is specified beforehand. It is further assumed,

a priori, that a solution does exist.

To initialize the process of QL an approximate solution to the
differential equations is chosen which satisfies the boundary con-

ditions. A left superscript indicates the iteration number.

o) 0<t<T (2.2)

Now for iteration number k(k = 0, 1,...,N) solve the following
sets of equations. N is usually not specified before the process is

started but is determined by the actual convergence of the solution.

. k
Inhomogeneous ak+l_ _ Ak (gf_ ~k+1 k., ak+l . k
Equation: y =iy ,t+ 3y) (y y )y (0)=y (0)
(2.3)
k
Homogeneous k+1 _/of k+1 k+1 _
Equation: Y = 8_y> Y » X (0) =1 (2. 4)




where § is an n vector, and Y is an nxn matrix with elements Yij'
Find a constant n dimensional vector akﬂ, such that the final

boundary conditions are satisfied by yk+1(T) where

k+1

AR+ k+1 k+
y =Yy Lyt o (2.5)
1.e.,
k+1 _ . n
yi (T) - yfi 2 1 "'1: 2;.--, 2 (2. 6)

Note that if we choose ali{+1= 0,i=1,..., B then by con-

struction the initial boundary conditions will be satisfied by y:

y0 =y L i=L2.., 5 (2.7)

i
can be found by employing a matrix equation based

k+1 _t the final time T,

The vector ak+1
on elements of the homogeneous solution, Y

and the difference between the solution of the inhomogeneous equation,

~k+
y 1 and the desired solution, Y o i=1,..., -,23 :
k+1 n 1 k+1 n k+1
yfl y,(T) Y,g+l.o..Y @+ 1
. = - + . (2. 8)
n Al n n
Yf_z_ E(T/ Y§:§+1 .YE,J Qn

This matrix, Y, evaluated at the final time is called the transition

matrix and it relates small perturbations of the initial conditions to

small perturbations of the final state.

If the elements of Yk-'_1 are independent then a unique value

for the vector constant ak+1

The columns of Y from 1 to

can be found.

are not used and they need not

be actually computed in a computer program. These columns are



not needed because no perturbations are allowed on the variables 1

to % , as these variables are specified by the initial conditions.

Since the complete solution of y(t) is required for the next
iteration either the following computation at every step of the
integration can be performed,

yk+1(t) - §k+1(t) + Yk+1(t) ak+1 (2.9)

or, preferably, the system equations can be reintegrated using yk+1(o)
as the initial condition. By reintegrating the system of differential
equations and comparing the desired final conditions with the actual
final conditions a check is made on the complete computational

process.

The foregoing procedure is repeated until satisfactory con-
vergence is obtained. Since it is difficult to discover the actual
accuracy of the solution from the equations of QL, the following

method of verification can be used.

Once the method of QL has converged the solution may be

verified by integrating the following system.

PN 0 o<t

(2.10)
yN+1(0) - yN(O)

Compare yN+1(T) with Y o i=1,... ,;—. If they do not differ
i

by an amount greater than that which might be expected from an
examination of integration procedure, then the solution yN may be
taken as exact. If not, then the entire computational process must be

examined for errors.




2.2 The Technique With Undetermined Constants

A system of unknown constants ¢, where c¢ is a p dimensional
vector, can be found using the regular QL procedure with only

slight modifications to it. A solution to the following system is

desired:
y=1y,c,t) 0<t<T
n (2.11)
yi(O) =Yg yi(T) =Vp. 1= 1,..., 3
i i
Also
qi(ylc) 0) = O) j- = lgc.o;p (2. 12)

The q's represent the p additional constraints needed to
determine the c's, which for the sake of notational simplicity are

assumed to all be defined at time 0.

Choose an initial trajectory yo satisfying the boundary
conditions, and an initial estimate of the constants, co. To find the

solution iterate the following system of equations:

§k+1 'fl . gi) lk(§k+1_ Y §k+1(0) ] yk(o)
gkl ( )I Y* v¥ o) -1 | (2.13)
NN @)l“:

Where Yk+1 is an nxn matrix, Z is a nxp matrix, (%)l is an nxn
. of . .
matrix, and (53)' is an nxp matrix,

Constant vectors ak+1(rn dimensional) and Bk+1(p dimensional)

are now determined such that



k41 ~k+1 k+1 k+1
y +Y o +

k+1 ck + Bk+1

1t

y

"

C

k+1 k+
Zl 1

B

(2.14)

satisfies the initial and final conditions, and linear approximations

to the g's.

This yk+1 satisfies the modified QL equation:

(8f)l< k+1 _ c )

k
k+ af \ (€ k41
y -fl +(ay)l

yi(0)=y1: Y(T)’yf 2 1_
and

k+
The constant vectors « 1 and

the following system of equations. Again o

1)... i

. (2_3) Ik (Yk+1(o) ak) . (2%) Ik Bk+1= 0

1 may be found by inverting

that o8 220, i=1,..., 2.
i 2
A k+1 n
. y,(T) Y g+l Y 2 Z
A n n n
yf% = y%(T) + Y-%—g+1,...,Y§nZ—2- Zip
0 q, 8q, 8q, 8q; ° 2q,
. . 8y-g+1 ayn acl acp
' 2 3q_ @ )
0 qp qp L qp qp ql
8y%+1 ayn 801 acp

(2.15)

is constructed such

(2.16)

The existence of an inverse depends on the independence of

the Y's, the Z's and the partials of q with respect to 8. Here the

independence is assumed a priori.

10




+
When the vectors ak+1 and Bk ! have been found and yk+1

generated in accordance with the previous formula by either of the
two methods suggested in the discussion of the regular QL procedure,

it will be found that yK-H satisfies the specified boundary conditions

and more nearly satisfies q = 0.

2.3 The Problem of Undetermined Final Time

In many engineering problems the final time is left un-
specified and it may be a quantity that the optimization procedure is

required to find.

With some methods there is no problem in determining the
final time since it falls out naturally through some stopping condition
on the integration of the equations of motion. In QL on the other
hand, data from prior trajectories is required and either the inte-
gration must take place over a fixed interval or some method of

approximating the required data must be found.

The solution of the two point boundary value problem is
complicated by the need for the derivative f and 9f/9y to be defined at
all points along the trajectory in the case where the final time is not

specified beforehand.

McGill and Kermeth6 solved this difficulty by treating the free
final time problem as a series of fixed time problems. Their method
is a procedure for iterating on both the solution of the differential
equation and on satisfying a boundary condition to determine the

correct final time.

Since the method involves fixing the final time one of the
other boundary conditions at the final time must be temporarily re-
laxed. If this were not done then the system would be over-

determined.

11



To start the process a final time is guessed and the solution
is iterated until the norm of the error satisfied some tolerance.
Then perturbing this guessed final time the solution is again iterated

until the tolerance is satisfied. At this point a recursion formula

is employed to find a new final time, ti.ﬁl:
k+1 _ k t?' t?—l k
tf =tf + —m«yz - yf ) (2.17)
R 4

the solution is now iterated with the new final time until the tolerance
is satisfied, The recursion formula on final time is then employed.
These last two steps are repeated until the change in final time is

less than some other tolerance and ylz (tf )w g at which point
y/

convergence is assumed., Here is the variable whose terminal
b

value Vs has been relaxed.
4

Recently Longg’ 10 described a technique which allows the
free final time problem to be handled directly by the method of QL.
The technique is a specialized case of the method stated in Section
2.2 for handling undetermined constants. It is this method which has
been used here to solve free final time problems unless otherwise

noted.

The method for handling a free final time problem consists of
changing the problem independent variable from time t to a dummy

variable 7, which is a scalar multiple of t. Thus we have the

equations
¥y =iyt
at (2.18)
dar %t

where ct relates t to 7.

12




The variable 7 is now taken as the independent variable and

the integration is performed with respect to it.

—Cdl_y = Qt f(y:t)

T

gl_t_ e (2.19)
dr t

The range of 7 is fixed: 0 <7 <1. With 7 fixed the integration is

simplified considerably. The constant c is now included in the usual

manner in the QL framework:
Equations to be solved:
y =y, t), y(0) =y _.¥(1) =y, (2.20)

th

Let yk be the k™ approximation to the solution. Note that

yk is constructed to satisfy the boundary conditions.

Three integrations are performed, 0 <t<T
A k k k of Ak+1 k ~k+1 k
y=c Hy ) +e, (55)1 (y -y ); y (0) =y (0)
n

. k
Yk+1= cf gf;)l Yk+1 ; Yk+1(0) -1 (2.21)

k
k+1 k k (8f k., k. _

RS ST RN —-ay)l z5; z%0) =0

A vector o and a constant B are now chosen so that

k+1 Ak+1 k+1 T k+1
y Ty + a +

Y BZ (2.22)

satisfy

k+1, . % k+ *.
y o E oy, Y =y (2.23)

*
(= denotes equality only on the components of the right-hand

vector which are specified

13



yk+1 is seen to satisfy

.k+1 k+1 ., k k+1 /of k k+1 k
¥ :ct f(y ,'r)+ct (5;)1(3’ -y)

C:k+1
t

with k41 (2.24)

el B3y M0 =5 N0) +a
The method can be modified by making the time factor vari-
29
able as has been suggested by Johnson. In Chapter 6 this is referred

to as the modified integration method.

(2.25)

d . L .
This variable factor reduces -a:—_ when ¥ is large which is equivalent

to decreasing the integration step size when the functions are varying

rapidly and increase it when the functions are varying slowly.
The constant a must be chosen by experience.
For more generality it may be desirable to use

c
dt t
= - I (2.26)

T .
(1+3~ Ay)

where A is a diagonal matrix., The elements of the diagonal may

then be chosen to weight the effect of the various state derivatives.

The additional terms generated by the variable time factor
while complicated to write out, are simple for a computer to generate
since they consist only of products of terms that are required in any
case.

Equations: ¥y = £(y,t)
(2.27)

-d? = ct(l + a(y y))

14




Integration with respect to 7

1
dy _ ( T, \\?
ar =% +a(y y)) f(y,t)
. (2.28)
dt _ ( LT, \?
a; = Ct 1 +a(y y))
Equations to be solved by QL
k+1 -3
dy~ _ k ( KT,k 2
ar = Ct 1+a(y 'y )) fly,t)+
3
4k k T -2
k kT _ky? of .k(ay KT.k 2 k
c, l:(l-!-a(y y )) 5y +ay _63'—) (l14ay -y ) f
' k+1 _k
(y "-y) (2.29)

The method used in solving the free final time problem is
much more generally applicable than might at first be thought. Often
a control problem has a discontinuity, and a very fine integration
mesh must be employed to maintain integration accuracy. In many
cases it may be much more expedient to use different time constants
in different parts of the integration to guarantee that the discon-
tinuities fall at an integration step where they may be handled

conveniently,

This technique is used by Long9 with the restriction that the
number of breakpoints is known before hand. The technique becomes
considerably more powerful if that restriction is avoided by letting
the computer determine the number of integration intervals and their

associated time constants.

15




CHAPTER 3
A QUADRATIC CONVERGENCE PROOF

3.1 The Contraction Mapping Principle

A proof of the convergence of the method of quasilinearization
can be shown for second order differential equations in general. The
proof of convergence is shown here using the contraction mapping
principle of functional analysis (see Kolmogorov and Fomin, for

example). 14

Definition: Contraction Mapping

Consider a complete metrix space S, an operator A, and a
metric p. The mapping A is said to be a contraction mapping
if:
1) ify €eR = Ay €8S
9 .
) if Y»Yg € S
then
plAy | Ay,) = a ply;,y,) and e < 1 (3.1)

Theorem (The Contraction Mapping Principle)

"Every contraction mapping defined in a complete metric
space S has one and only one fixed point, i.e., the equation Ay =y

has one and only one fixed point."*

3.2 The Proof of Quadratic Convergence

The proof given here for the quadratic convergence of the
method of QL follows McGill and Kenneth4 with the addition of one
term. The importance of the extra term becomes apparent when

practical control problems are to be solved.

&
Reference 14 page 43.
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It is this additional term which allows the control to be
handled directly and the imposition of constraints on the control with-

out the addition of multipliers or the use of a penalty function.

In the proof a method for finding the solution to a system of
second order, ordinary nonlinear differential equations will be shown.

The proof is for a fixed end time problem.

System: y"' = f(y,t,u), 0<t<T

Boundary conditions: y(0) = Yo y(T) = Vs

Dimensionality: y and f are n dimensional (3.2)
| u is m dimensional

It is assumed here that u is of the form:

u = gy, t)

Or that, if gl(u,y,t) = 0 must be solved for u, then that g, has con-

tinuous second partial derivatives.

Employing vector notation consider the following system

whose solution is to be found.
yn = f(y,t,u) 0<t<T
u =gly,t) (3.3)

y(0) = Yo y(T) = Ve

Now consider the sequence of solutions to the system

k+ k k+ k k
a5 Py o k=01,
k
y () =y, yk(T) =y, allk (3.4)
where
of, m of dg
k i i 2
Jy ,t) = {— + _— == =(J..) 3.5
(y 5y Z T ) i (3.5)
i £=1"°% y=yk
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and

s
[
L]
-

and

max | y{(t) - Yo ()] <k0<t<T (3.6)
t,i i
max |y.-y. | <ko<t<T (3.7)
it :
- (- L. | (3. 8)
vp (9% ) 79 '
1 1 1 1 .

Now provided that

a)
b)

c)

d)

e)

Then
a)
b)
c)

f is continuous

of
ay
of
og

og
oy

exists and is continuous

exists and is continuous
exists and is continuous

of  w Oof D
f and —5—}; +£El -BE . —a—f’ are Lipschitzian with respect to y

A unique solution to (3. 3) exists.
The series (3. 4) converges to it.

The error bound is given by

k+ _
p(y l,y)f k, pz(yk+1, yk) where k, is defined later and

0< k, <1 (3.9)

Note that assumption e) is quite restrictive compared to the

assumption Kenneth and McGill4 make at this point. However, it must

be kept in mind that the addition of this term allows certain com-

putational short cuts and that the primary goal of this paper is to

provide computational results.
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Define the constants P,, R.., Q., and M, :
it i i ij

max lf y,t, gly,t) l <P (3.10)
y,t

9, m Oof dg
max | 50+ ), 33—-8—£ <R,. (3.11)
v.t |95 =1 “8p Vi ]
[F.(v.0) - F v, )] <Q Z lle— o (3.12)
(?i_ . m afi Bgz _ of, m of, agz

Y=y Y=Yq
n
SMij (kf:‘l Y™ Yor ) (3.13)
Define

m = max (p Ry Qp MIJ) (3.14)

A metric space S is defined as

S '{y(t)[ a) yi(t) are continuous }

b) y(0) = Yo y(T) = Y

Ty by -yp <k
i
with a metric

n
_ max _
ply »Y5) = 121 ¢ | ylj(t) yzi(t)l (3. 15)

Use'the symbol A to denote an operator performing a single

quasilinearization iteration on some yeS.
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To show that the contraction mapping principle applies it is

necessary to show that the operator A has the following properties.
a) if yeS then AyeS
b) if yleS and y2€S then

p(Ayl.Ayz)gap(yl, Y)» 0<a<l1

First show that if yeS then AyeS.

By employing the Green's function, G(t,s), the solution of

(3.4) can be written

T .
Ay = yT- S G(t, s){ J(y,s)[ Ay(s) - y(s)] + f(y,s)}ds
° (3. 16)
STt fortgs
G(t,s)= (3.17)

-S'I_‘ (t-T) fort> s

Note
lat. )< 3

Now

T
Ay - yT=S G(t,sq{I(y,s) [Ayls) - y(s)] +£(y,s) }ds (3.18)
o]

or

5, max] { ate, e 3
p(Ay,y.) < max Git,s} ), J. (y,s)[Ays)- y.(s)]
T8 1 % j=1 N ;o
+I-‘i(y,s) ds

n
< E max
i=1 i

T
(Z) {n;ax Rij p(Ay,y) +Pi}T

T2
<nm (p(Ay,y) +)

2
<nm LY p(AY, yp) + plyp,y) +1 (3.19)
3 T
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So

Hence

So

2
n m —'1—;—- (nK+1)
p(AY,y )< -2 (Y ¥) (3.20)

1 -an

Now for T sufficiently small

max lAy.,y" <K (3.21)
. it —
i,t i

AyeS.

Second, it must be shown that

p(Ayl.Ayz) < ozp(ylayz), 0<a<l (3.22)
Consider
T
Ay - Ay,*= So Glt, s) {J(yz,s) (Ay,- ¥5)- Iy, 8) (Ay;-¥))
+ f(yl, s) - f(yz, s)} ds (3.23)
T
= 3; Gt, s} I(y . 8) [ Ay - Ay, + Iy, 8) [y, - ¥,]

+{ Iy, 8) - Iy, 8) Jy -Ayy) + 1y ,8) - f(yz,s)} ds

n
P(Ayl,Ayz) = E max | AY,i” Ayzil (3.24)
i=1 t
2
<nm —p [plAY Ay (Y L T HPUY 1 Yo )Ry 1) AV lalyy3))

2

T

<nm T [olay |, Ay 0t ply,.y,) 2400y v + o0y ps AY))]
T2

T

<nm o [p(Ay;,Ay,)¥ely ,¥,) (242 nK)] (3.25)
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(&}
o]

nmg—- (nK+1)
p(Ay ., Ay,) < 5— Py ¥,) (3.286)

!

[y
[]
o]
-
-
=
it

4
Thus if T is restricted still further then
p(Ay ,Ay,) <eply,.y,), 0L a<1 (3.27)
and the operator A satisfies both conditions to be a contraction

mapping.

Therefore the sequence

k
y = Ay (3.28)
has a unique solution.

To prove quadratic convergence examine:

T
oy =S att, o) |35, ) [f5 Hs) -y¥is)] +[85", o)-t(y, 9] | as
° (3. 29)

This equation arises from taking the difference between

Jk+1 k+1 k
7t 43 -y (3. 30)
k  k
Y=Yy ¥=y
and
7 = 1] (3.31)
y=y

Applythe mean value theorem to the last term on the right:

Kk afj afj agi I K 3. 32)
f(y ,s) -fy,s) = +8 . (y -y) 3.32
Jy Jy oy agi oy y oy
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where k; may differ for each fj’ and yk. So

2
k+1 T k+l n k 1 k n—
ply” ",yYISm [p(y ¥ Hely ")+ o+ ply Ly}

+n p(yk+1.y)] - (3.33)

Now p(yk,Jy)gp(yk,y) so that

2
k+1 T k+1 k k k+1
ply  ,y)<nm [p(y ,y dely Ly)+ely ,y)]
But
k k+1 k k
ply Ly)<pely 7,y) +ely ,y) <2p(y )
so
2
k+1 T 2, k k+1
ply” ,y)<nm- [Zp vy +ely ,y)]
or
am I
k+1 2 2, k
ply )< ——— py.) (3.34)
l1-nm e
Defining
_ T2
- n m-—z—
k= (3. 35)
2 2
l1-nm T
4
Then
k+1 2, k
iy’ NS kg ly L) (3.36)
and the quadratic convergence is immediately apparent.
A more useful form can be found using
k 1 k+1 k
Py, < 7 ply ,y) (3.37)

l-k2
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This comes from

k+1 k+1 k+2

k k
ply LM< ply Ly D+ply T,y M.

< p(yk, ykﬂ)[l tatait. -]
< oy ¥ ™ - as0<a< (3.38)
and as a = k2 from (3.27).
p(yk+1,y)§ “2 3 pz(ka, k) (3. 39)
(l-kz)
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CHAPTER 4

THE CHOICE OF AN INITIAL TRAJECTORY FOR THE
METHOD OF QUASILINEARIZATION

4.1 The Natural Region of Convergence

The choice of an initial trajectory for the method of QL is
often difficult. Usually part of the trajectory is known quite well:
the physical variables are constrained and a priori it may be known,
for instance, that they follow a roughly elliptical path as in the case
of a reentering space vehicle. The remainder of the trajectory is
usually completely unknown unless a similar problem has been
worked before. There are few guides to use in approximating the
adjoint variables. Consequently the range of convergence of the

technique is of great practical importance.

Three different methods were examined to see how much they
could extend the range of convergence. All the methods were com-
pared with the usual method of QL., The computational results are
given in detail in Chapter 6, where the Brochistochrone problem is

discussed.
4.2 Method 1

Using a technique employed by Breakwell, Speyer and Bryson,
the corrections to the initial conditions (the corrections which insure
that the boundary conditions at both ends are satisfied) were multiplied

by some fraction before use:
y’k+1(o)=yk(o)+eak , 0<e<1, k=0,1,...,P
+
yk 1(0)=yk(0)+ak , k=P+1,...,N (4.1)

where ak is the correction vector. Needless to say, the use of this

multiplier destroys the quadratic convergence of the method of QL
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(if the multiplier is not equal to one). The constant P, above, is
either fixed as some small number less than the total number of
iterations expected, or is changed by the computer program de-
pending on the change in the trajectory between two successive
iterations. Here no attempt was made to optimize the choice of P

and only the former of the two choices was tried.
4.3 Method 2
The second method tested is a variation of the first. Here
k+1 k,. k
y (o) =y (0)+cr€

(4.2)

0<e<1 if k
€e=1 if k

0,...,P
P+1,...,N

as in the usual QL technique. However, the at is found in this

case from:
k+1
k+
yf y1 1(T) Y n . .Yln a:+1
1 1, 3 +1 n/2+1
e = =
: + © k+
v <) Y Y \ oKL
I 2 L Z,n “n
2 2 2°2 2’
(4. 3)
and ak+1.= .—ak+1 =0
€ en/2

4.4 Method 3

The third method of increasing the range of convergence is
similar to the one presented above but retains more of the elements
of QL. Again a constant € was used to slow down the speed of con-

vergence. Here also if € # 1 quadratic convergence is lost;
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,k+1=e§k+l+(l-e\yki 0<e<l1 k =1, P
~ (4.4)
k+1_ yk+1 k=P +1,....N
where
yk is the k trajectory
~k+1 . st . .
y is the k+1°" trajectory as computed in the usual manner
of QL
k+1 . st . .
y is the k+15" trajectory stored and used for computing the

matrix of partial derivatives.

It can be shown theoretically that this method extends the
range of convergence. Using the notation of Chapter 3 and following
that proof as a guide consider the one dimensional case. The m-

dimensional case follows directly.

First the theorem from Chapter 3 is simplified without proof
to the case where y is a one dimensional vector. Then the effect of

Equation (4.4) is shown in terms of this theorem.
Problem

A solution to the following second order differential equation

is desired:
y' = f(y,t,u) 0<t<T
u = g(y,t) (4.5)
ylo) = Y, , y(t) = Vs

For simplicity assume that g is an explicit function of y and
t. Then
y' =y, t) 0<t<T

ylod =y, y(T) = y; (4.6)
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Theorem 4.1

Now consider the sequence of solutions to the system:
k
+ 0 k+
R & RS A L JE s
oy
k k
yl) =y, » ¥(T)=y; all k (4.7)

k
where l indicates that the quantity immediately to its left is evaluated

on the kth trajectory, and

max |y°() -y ) |< K 0<t<T (4.8)
t
with
t
Yp =W Y )T - Ve (4.9)

Now provided that:
a) f is continuous

b) -giy exists and is continuous

¢) f and %f; are Lipschitzian with respect to y

Then
a) A unique solution to (4. 86) exists
b) The series (4.7) converges to it

¢) The bound necessary for a contraction mapping is
given by k2:

0<k,<1

2
k, =—m—l—/§‘3— (2 + 2K) (4.10)
1-m T /4

where m is defined in Theorem 4.2. Now the theorem from Chapter

3 is modified to cover the new algorithm generated by Equation (4. 4).
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The system for which a solution is desired is still described

by {4.6). The algorithm of (4.7) is modified to give:
k
+ of ~k+1
"k1=3— GEL Ky X ke-0,1,...,N
y
k k N
ylo) =y, ¥ (T) = Ve all k (4.11)
FH e Ky (1m0 T allk, 0<e<1
and
max [y°(t) - y(t) | <K 0<t<T (4.12)
and
t
Yp ==y ) 7 - ¥ (4.13)

Now provided that
a) f is continuous

b) %i—, exists and is continuous

of
c) f and 3y are Lipschitzian with respect to y

Then:
a) A unique solution to (4.6) exists
b) The series (4.11) converges to it

¢} The bound necessary for a contraction mapping is
given by k_:

3
<
0<k, <1
2 2
k3 - mT /42 <1+€ (2K+1)- _IP.E__ (1—5)) (4. 14)
1-mT /4
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Proof

Define
max lf l< P
.t
max [2H< R (4.15)
oy
y.t
of of
lg; '551_ |<M|y1-yzl
Y=y, Y=¥q
m = max (P:RJQ: M) (4- 16)

A metric space S is defined

S ={y(t)l a) y is continuous}
b) ylo) =y, ¥ (T} =y,

c) maxly-y l<K
¢ T

with a metric
Py, ¥y) = mtalel-yzl (4.17)
The symbol A is used to denote the usual quasilinearization
operation of Theorem 4. 1.
The symbol B is used to denote the operator in (4.11).

To show that the contraction mapping principle applies it is
necessary to show that the operator B has the following properties
a) if yeS then B yeS
b) if yleS and y2€S then

p(By,, By,)<aply,,y,) 0<a<1 (4.18)
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First show that if yeS that By €S

By = (l-€) y + € Ay , 0<e<1 (4.19)

Since yeS then Ay €S and so directly By €S by convexity. Thus the

contraction mapping principle may be applied. Second, show that

p(By,. By,) < ap(yl,yz) , 0<e<l1 (4.20)
Consider
T
By,-By, - | Gt.s)[t,| (By,-y,) - fyl (By,-y,)
° Yo Y1
-(fl - 1] ) ds (4.21)
Y1 Yy
where G is the Green's function
ET_—T t for t _<_ S
G(t,s) = S (4.22)
T(t-T) for t> s
and
lat, )| < 3 (4.23)
So employing the definition of B:
T
Byl-By2 =S‘ G(t, s) fy (e Ayz—e y2)
o Yo
-f | (eAy -ey)(fl, -] )ds (4.24)
1 1 ) ¢
y yl yl }’2

or
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T
Byl—By2= € S‘ G(t, s) fy‘ (Ayz-yz) - fy (Ayl-yl)
o Yo ¥y
- (f[ - 1| ) ds
Y1 Y9
(Cato sl -1l
-(1-¢) \ Gt,s) (f -t ) ds (4.25)
(o] y1 yz

Recalling the derivation of p(Ayl, Ayz);
2

T
p(By,, By,) < eplAy, Ay,) +(1-¢€) —n—l;l—— p(y . ¥g)
(4. 26)

now
mT2
4
p(Ay , Ay,) < — (2K + 2)ply,»¥,) (4.27)
1 2" — 2 1’72
1..mT
4
so
mT2
4 mT2
p(By., By, ) < ———— \1+e(2K+1) - (1-€) ~——/ p(y,,¥,)
1 2" — mT2 4 1’72
1 - e (4.28)
with 2
mT
4 mT2
k = ——— |1+€(2K+1) -(1-¢) (4.29)
3 2 4
- T
4
(4. 30)

p(By ,By,) <k ply,.¥,)

This completes the proof if 0< k3 <1.

No attempt is made to show quadratic convergence, since it
occurs only fortuitously in this case. The loss of quadratic con-
vergence is the price paid for extending the range of convergence.
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ot was drawn. Figure 4.1 gives the largest

than unmodified QL a p Fign

(L)

K for a particular mT" /4 which will still result in 0 < ké < 1. This
shows theoretically that as € is decreased that the range of con-

vergence increases.

The curve € = 1 is the curve for k2 (the ordinary QL pro-
cedure), Thus if 0<e <1, Method 3 has a larger range of

convergence.

The practical usage of Method 3 is described in detail in
Chapter 6 using the Brachistochrone as an example, and in general

with the reentry problem treated in Chapter 7.
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CHAPTER 5
COMPUTATIONAL METHODS

5.1 Procedure Organization

To test the foregoing theories two sample problems, the
Brachistochrone, and the reentry vehicle trajectory determination
problem, have been solved using a large scale digital computer. In
this chapter the techniques by which these problems were solved is

discussed.

In order to apply the method of QL to the control problem it
is necessary to integrate the equations of motion either analytically
or numerically. Few real problems can be solved analytically, and

so numerical procedures must be resorted to.
Each iteration of the method requires seven steps:

(1) Choose an approximate trajectory
(2) Compute the derivatives along this trajectory

(3) Integrate both the inhomogeneous equations and the
appropriate homogeneous equations along the approximate
trajectory

(4) Determine the error in the stopping conditions
(5) Invert the transition matrix

(6) Perturb the initial conditions of the inhomogeneous
equations so that the final errors should be nulled out.

(7) Reintegrate the inhomogeneous equations of motion to
check that the final errors are zero using the perturbed
initial conditions.

The new trajectory obtained from (7) is used as the next
approximate trajectory for (1). Repeat (1) to (7) until convergence is
obtained. The trajectory of (7) may be modified before use in (1) if
the method of widening the range of convergence discussed in Chapter

4 is employed.
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5.2 Integration

Because the method of QL requires that the previous tra-
jectory and various derivatives along this trajectory be available at
each iteration, care must be taken to select a reasonable integration
scheme. There are a variety of methods discussed in the literature
(see, for example, 2,5, and 9), For each of the methods discussed
there is a trade off between speed of computation and required com-
puter memory capacity. The methods which require a large com-
puter memory generally are faster than those which require less and

vice versa.

The program written stores the points along the trajectory
and the necessary derivatives. Thus it is a relatively '"fast" method

and makes use of the large core memory of the IBM 7094.

After the trade off bétween computational speed and required
memory capacity has been fixed, there are still several alternative
ways to proceed because different integration schemes demand
different amounts of storage and computation time. To achieve a high
integration accuracy it is either necessary to use a very small step
size with a simple integration formula or use a larger step size with
a more complex formula. The trade off's are discussed in many

places, for example, 18, 19, 20, and 21.

The integration is performed in three main blocks. The first
block erudely initializes the second. The second block is iterated
until fourth order accuracy is obtained and is used to initialize the
third block. It is in the third block that the bulk of the integration

occurs. The integration procedure uses a fixed number of steps.

The first block consists of three steps of Euler integration to
provide four data points for each variable. The second block is a

fourth order method and uses:
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(o]
v, = +3(9'+19'-5'+')
Yy TV, T 92 %Y, Y1 =9y T Y3
o - h 1 ] ' (51
Yo=Y, 3 y0+4y1+y2) - 1)
v, =y +E(3y'+9y'+9y'+3y')
Y3797 8 o 1 2 3

where h is the step size, the subscripts refer to steps in the integration

and the primes denote the derivative,.
Yo is the starting value of y
Yy:Yq: ¥ are provided initially by the Euler integration
—}"1,;2,;3 are the next choices for y,,y,, and y,
The procedure is iterated until the method of 5.1 has converged. As
a check on the convergence it is wise to save |§i— yil fori=1,2,3. An

examination of these quantities will show whether or not the method

has converged.

The values of Yy Yo and Vs thus obtained are used to start

the modified Hamming method:

éﬁ | . ] 1
pn+1 s -3 + 3 (Zyn yn 1+ 2yn 2)
m = - _1_1_2. ( -c )
n+l Pn+1 " 121 Pa” Cn
1§ - .2
m! f(mn+1) _ (5.2)

1 _ ( ' 1o ! )]
cn+1 © 8 [gyn y1'1-2+ 3h mn+1+ 2yn yn-l

"
[¢]
+

Yat1 = Cnt1 ¥ 127 Pn+1” ntt

The vectors p, m, and c in the above represent the predicted,

modified, and corrected approximations to the succeeding step.
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This method is used for the remainder of the integration.

It is also a fourth order method.

The stability of the modified Hamming method has been
2
examined by Chase 1 and found to be quite good. The use of the
initializing formulas, 5.1, is discussed by Ralston and Wilf19 in

connection with this method in particular,

5.3  Matrix Inversion and Determination of the Eigenvalues

To invert the transition matrix a program using Gaussian
Elimination (19) was written. The program was written with double
precision arithmetic in order to eliminate the round-off error which
results from the procedure used. Otherwise this round-off error
will destroy the accuracy of the inverse matrix. The elimination of
round-off error is particularly important here since Gaussian
Elimination is a direct procedure and there is no convenient indi-

cation of the accuracy of the inverse.

The importance of using double precision arithmetic when

processing a transition matrix cannot be understated either. °

In the case of the reentry problem, the transition matrix is
so nearly singular that, the use of single precision arithmetic results

in eigenvalues that are an order of magnitude off.

The eigenvalues were found by first reducing the transition
matrix to upper Hessenberg form. The resulting matrix was then

reduced by a series of QR transformations. 25,26,27,28

The program
written follows SHARE program 3006 closely but uses double

precision arithmetic.

5.4 The Determination of Partial Derivatives

If the Hamiltonian can be used to solve for an analytic

expression for the control, then the control can be eliminated from
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the problem being solved, and the application of the method of QL is

straightforward.

On the other hand, if the partial derivative of the Hamiltonian
with respect to control cannot be inverted explicitly to find the con-
trol as a function of state, then the problem of applying the method
of QL becomes much more complex. This occurs if the control is
bounded and it is not desired to have to include additional multipliers

in the problem formulation.

The method of Chapter 3 can then be used to advantage. In
the method of Chapter 3 the system

y = f(y,u,t) (5.3)

is solved iteratively using
T k
k+1 ou k+1 k
=4 (ay ) (5.4)

The treatment of the boundary conditions is omitted as they are

dealt with in Chapter 3.
Associated with either set of equations is:
H(y,t,u) (5. 5)
where it must be kept in mind that y represents both the state and
the adjoint variables.

The Maximum Principle states that H should be minimized if
the criterion function is minimized and the multiplier associated

with the criterion function is positive.

If u is unbounded this results in the necessary condition

(when 9H/du contains u):
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H

K:O (5.6)

which must be solved for u.

If u is bounded this same equation will result if Valentine's

method is used.

However, there is another approach. If u can be determined

from the Maximum Principle directly:

u = u{ min H(y,t)} (5.7)
u

then the term 0u/dy may be found by perturbations:

ou _ bu

3y 25y = l:u lrr:lin (H(y+6y))l -u [nlllin (H(y))”/éy (5.8)

Equation (5.4) can then be applied, and the modified method
of QL used to solve the problem.

In cases where the control is bounded it may be more con-

venient to recognize that on the bound:

du
3y - 0 (5.9)
and that off the bound 8u/dy may be known explicitly if

9H _
= =0 (5.10)

can be solved for the necessary derivatives.
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CHAPTER 6

THE BRACHISTOCHRONE

6.1 Properties of the Brachistochrone

The Brachistochrone is a suitable choice for a test problem.

It has many attractive features:

(1) It is governed by a set of six ordinary nonlinear
differential equations
(2) An analytic solution is available

(3) It is computationally simple.

With the Brachistochrone a variety of tests were made on the

foregoing theories:

A comparison was made between the rates of convergence of
the undetermined parameter method for handling the free final time

problem and that used by McGill and Kenneth.

Experiments were conducted to see how well the methods of
Chapter 4 succeeded in extending the range over which the method of

QL would converge.

The effect using the modification of Chapter 3 instead of
eliminating the control from the problem was also tested on the

Brachistochrone.

6.2 The Equations of Motion

The problem of the Brachistochrone is the problem of finding
the path that a mass, accelerated by gravity alone, should follow to
fall from one point to another for minimum time, T. There are
many variations on the Brachistochrone problem and the one of
finding the path of a mass going from a point A to a verticél line B is

worked here. The coordinate system is shown in Figure 6. 1.
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sinu (6.1)

v

"
!
o
0
[S
=
=

The initial equations are:

x(o) = 0

h(o) = h (6.2)
o

v(o) = vo

The final conditions are:

x(T) = X¢
h(T) = unspecified (6.3)

v(T) = unspecified

Changing from (x, h, v) to (yl, Yo y3) and adding the adjoint
variables (y,,y.,y.) to get yT= (y ¥.)
4’75’76 1777787

The Hamiltonian for the time optimal control problems is:
H=1+ y4(y3 cosu) + y5(y3 sinu) + ys(-g sinu)

The differential equations for the adjoint variables are
yy=0
¥5 =0 (6. 4)
ys = -y, cosu - yg sinu

Since h(T) and v(T) are unspecified there are transversality

conditions to be satisfied.
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y4(0) = unspecified y4(T) = unspecified
y5(0) = unspecified ys(T) =0
y6(0) = unspecified y6(T) =0 (6.5)

The two specified conditions on the adjoint variables com-
plete the boundary conditions of the system of differential equations
formulated. There are now six differential equations and six

boundary conditions.

The Hamiltonian may be solved for the optimal control

directly
3_H___0=_ sin u + cosu - y. g cCosu (6.6)
u Y493 Y593 o :
or
YeVa~ Y8
tanu = _5_2._6_ (6. 7)
'y4y3

Using this solution for the control, complete solutions may

be found in the following way.

First find T and T!' from the two simultaneous transcendental

equations:
v '
o _ 7T
2Tg  °°%2T (6.8)
and
=1r- - - '-I. ﬂ.'.
0 z (xf xo) T p- sin T (6.9)

Equations (6. 8) and (6. 9) result from (6.1), (6.2), and (6.7) directly.

The intermediate steps are skipped.
Second calculate w

=T
w=g (6.10)
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x =x + £ [t +l cos w(t-2T1) sinwt]
o 2w w

h=h + _g_z_ sin w{t-2T") sin wt (6.11)
° w

v = £ cos w(t-T")
w

u = w(t-T")

These may be used to compare the calculated solution with the true

solution,

In Figures 6.2, 6.3, and 6.4 where it was desired to have a
small integration error, 48 steps were used in the integration. In
each of the cases, either 15 or 16 iterations were employed to see

how the methods stabilized (or did not).

The difference in required IBM 7094 machine time to run these
problems varied a few percent from one variation to another. The
longest was the modified integration scheme which took 10 percent
more time than either of the others., The programs written were in
no sense optimized with respect to computer execution time and

required about 85 seconds for 16 iterations.

As a check on the 48-step integration accuracy the solution
was iterated until the only error sources were round-off and trun-
cation errors. Table 6.1 shows a comparison between the calculated

and the true values.

6.3 The Effect of Numerical Partial Derivatives

By the term numerical partial derivatives it is meant that in
place of solving the Hamiltonian for the control explicitly to get an
analytic expression for it, and the partial derivatives du/dy, that

these quantities are found by perturbations as discussed in 5. 4,
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H(o)
H(t f)

TABLE 6.1

BRACHISTOCHRONE SOLUTION

(QL vs True)

QL True

0.0 0.0 ft

6.0 6.0 ft

1.0 1.0 ft/sec
-0.06378313 -0.06378321
-0.03101964 -0.03101964
6.0 6.0 ft
2.195396 2.19540160 ft
15.67811 15.678108 ft/sec
0.7343791 0.7343789 sec
0.149x1077 0.0
0.124x107° 0.0

| Note: p, is constant, p, is zero, = 32,172 ft/sec
1 Py €

Note: 48 steps in QL integration
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The truncation error caused by the finite steps taken in the differences
results in the convergence rate being slowed down in the middle as
shown in Figure 6.2. Neither the initial convergence rate nor the

final accuracy were effected.

6.4 Effect of Variable Time Parameter

A comparison was made between the different techniques of

Section 2.2 for handling the problem of free final time.

In Figure 6. 3 the method of using a free parameter for solving
the free final time case, Equations (2. 18) to (2.24) are compared
with McGill and Kenneth's method, Equation (2,17)., It is seen
immediately that the method of using a dummy independent variable
converges much more rapidly. There is no difference in the com-

puting time required per iteration.

In Figure 6.4 the convergence and ultimate accuracy of using

Equations (2.27) to (2. 29) in place of Equations (2.18) ‘to (2.24) is
illustrated. The more erratic convergénce of the modified method
can be attributed to two sources, the lack of any sharp changes in the
derivatives in the problem solved and the addition of extra com-
putations. In é problem as simple as this, the modification adds a

few percent to the computing time per iteration.

6.5 The Extension of the Range of Convergence

Employing the methods of Chapter 4 a sequence of tests were

made to see how far the convergence could be extended.

The number of iterations, P, made with the convergence
constant €, not equal to one was chosen a priori to see how the
methods of extending the range of convergence affects the speed of
convergence. While choosing P a priori is not as computationally

efficient as it might be it is much more expletive.
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To examine the speed of convergence a quantity called Normax
(from maximum norm) was examined after a fixed number of

iterations.

k+1
Normax = Max lyi (t) - yli{(t)l (6.12)
i,t
kKo.\ . . . .th . . .
then yi (t) is the time history of the i~ wvariable, including both state

and adjoint variable, on the kth iteration.

Method 1 of Chapter 4 was examined using the Brachistochrone
as a test problem and it was found that for € = 0.5 and 0. 75 that this
technique did not have a convergence range even as large as that of

the usual QL. No results are displayed.

The results of the examination of Method 2 are shown in
Figure 6.5. Since P was fixed a priori the method does not converge
as rapidly as ordinary QL although it does converge over a some-
what much wider region. The test problem was the .Brachistochrone

with € = 0.5.

The results from Method 3 are shown in Figures 6.6 and 6.7,
This method of extending the range of convergence works far better
than that of the other methods examined, and considerably better

than the usual QL.

In Figure 6.6 two iterations of Method 3 (¢ = 0.5) were
followed by three of the usual QL procedure for a total of five iter-
ations. The results are compared with five iterations of the usual

QL procedure.

In Figure 6.7 four iterations of Method 3 (¢ = 0.25) were
followed by three of the usual QL procedure for a total of seven iter-

ations. The same standard of comparison is used as in Figure 6.6.
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Figure 6.6 and Figure 6.7 show that at the expense of
computing time a much wider range of convergence can be obtained
with Method 3 than is available in ordinary QL and that the more is

paid the wider the range of convergence is obtained.
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CHAPTER 7

THE REENTRY TRAJECTORY PROBLEM

e

he Reentry Pro

-1
.
—

The solution of the reentry vehicle trajectory problem is an
appropriate choice for a more complex problem. It is well known
to be computationally difficult because of integration instability and
the sensitivity of the adjoint variables.

The equations of motion are those used by Scharmack, 15,16

Breakwell, Speyer, and Br‘yson,23 and are similar to those used by
1 .

Payne. 8 These equations are considerably simplified but are still

realistic physically. The reentry vehicle is assumed to have a low

lift-drag ratio.

The simplifications include the use of an exponential model of
the atmosphere in place of a more complex pressure-altitude

relationship and the use of a simple lift drag polar.
7.2 Two Cases

Two cases were formulated to see what differences would
arise., The first is similar to both Breakwell, Speyer and Bryson23
and Palyne18 and the second case is that solved by Scharmack. 15,16
The primary differences are those of initial and final conditions,
control polar, and in the case of Payne the use of a more accurate
gravity approximation here. The criterion function also varies:
Scharmack used both convective and radiative heating, Breakwell used

velocity, while Payne considered convective heating and sensed

acceleration.

The two cases are defined more explicitly in Table 7. 1.

59



TABLE 7.1
TWO REENTRY CASES

Case 1

Case 2

Initial velocity

Initial height

Initial flight path angle

Final velocity
Final height
Final flight path angle

Final range

Drag, C
Lift, C

D
L

Criterion Function

35,000 ft/sef::2
400, 000 ft
-8.1°

27,000 ft/sec
250,000 £t
0

Free

0.274+1. 8 sinZu’

Integral convective
heating

1.2 sin ulcos u1

36, 000 ft/sec2
400, 000 ft
-5.7°

1650 ft/sec
75,530 ft
Free

5,170,000 ft

0.88+40.52 cosu
-0.505 sinu
Integral convective

and radiative
heating
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Q

The Equatio

The lift drag polar employed in Case 2 was

CD = CDO + CDL cosu

(7.1)
CL = CLO sinu
where u is the control angle (angle of attack).
This is completely equivalent to that used by Case 1:
Al 1 .21
CD = CDO + CDL sin"u
. (7.2)
Cc,. =C sinu” cos u1
- L L.O

with the following substitutions in the above equations the equivalence

can be seen:

1
Cpo * Cpo * CoL
cl -.ac
DL DL
i (7.3)
Cio°2Cpo
u1 =u/2

The quantity to be optimized (minimized) is the total stagnation
point heating per unit area including either the convective term alone
or both radiative and convective terms:

T

J- S g at (7.4)
o
q-= flr +q for both radiative and convective
¢ heating
. 3/p .
q.=cv /& convective term (7.5)
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3/2 12.5

él = 7.5N P -1-4 radiative term (7. 6)
r PO 0

The meaning of the symbols is given in Table 3.

The equations of motion are defined with respect to a two

dimensional spherical earth. See Figure 7.1. They are:

. S 2 gosin'y
v=-— pv C(u) - ——

2 D 2

m (1+8)

g cosvy

. S V cos vy o
Y= — pv C_(u)+ -

2m L R(1+§) v(1+§)2
:S = = sin

R Y
: v
§ = iTE cos vy (7.7)

- -BRE
p=p.L
Spv \/ 2 2
b Zmg CL(u) + CD(u)
lul<u,
7.4 The Choice of Control
The Hamiltonian is defined as

H=pa__q+,plv+p2-y+p3§+p4§ (7.8)

and

p‘O_ =1

With this choice of sign for P, the Hamiltonian must be

minimized if the integral of § is to be minimized. If the opposite

62




o
o

gl(l)w-&m<

velocity
normalized altitude
flight path angle

down range distance

ratio of frontal area to vehicle mass
gravitational constant

air density at sea level

exponential constant
earth radius

drag coefficient
lift coefficient
drag and lift coefficients

convective constant
radius of vehicle nose

sensed acceleration

control constraint
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VEHICLE
TRAJECTORY

VEHICLE

A = R = radius of Earth

A B = h = altitude of vehicle above

Earth
v = velocity vector
v = angle between local

horizon and velocity
vector

¢ = down range distance

= normalized altitude

g =

jas]iay

REENTRY VEHICLE COORDINATE SYSTEM
FIGURE 7.1
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The choice of p‘o as plus one meansg that not only must 7a =0
for unbounded control but also
2
o H
5 > 0 (7.9)
ou

From this necessary condition it is possible to choose the sign of the

control that will minimize the Hamiltonian.

To find the control for the case where the bound is not reached

set
oH
o= 0 (7.10)
or
Spv2 Spv
0=p1 5 CDLs1nu+p2§r—n— CLOcosu
where H is taken from Appendix A so
C P
tanu = - C-LO— —2; (7.11)
pL P

To find the corresponding value of the second partial of the

Hamiltonian with respect to u

2

2
o H - SPV _ SPV . 7.12
55" Py om Cpp°SU - Py, Cposine  (7-12)
=p Spv2 C cosu ( - —p2 CLO tanu)
1 2m DL _plv CDL
S v2
P C cosu (7.13)
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Thus for small u the sign of the second derivative will be the

product of the signs of p. and CDL'

1

If CDL is negative then Py must be negative for small u and

conversely if CDL is positive the Py must be positive for small u.
Case 2 uses

CD(u) = 0.88 + 0.52 cosu

(7.14)
CL(u) =-0,.505 sinu
23
while Case 1 uses
C (ul) =0,274 +1.8 sin2u1
D
1 1 1 (7.15)
CL(u ) = 1.2 sinu” cosu
or
CD(u) = 1.174 - 0.9 cos 2u
(7.16)
CL(u) = 0.6 sin 2u

which result in different polars being used to determine the control

as CD has different signs in the two cases.

L

The polars are illustrated in Figure 7. 2.

The equations for the adjoint variables are listed in Appendix
A, as are the elements of the matrix of partials necessary for QL.
The computer program used to solve the equations is described in

Chapter 5.

7.5 Numerical Results

Case 1 was solved with and without a bound on the control.

The constants used are listed in Appendix B, Since the computer

program was written to handle control in the form of Case 2, the
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values of the lift-drag parameters correspond to Equation (7. 16)

when they are tabulated.

Irregardless of whether or not the control was bounded the
range of convergence is quite small. Even if a piecewise linear
approximation to the actual solution was employed as the initial
guess, the convergence was slow. In fact, it was always necessary

to employ the convergence improving constant described in Chapter

4 for the first few iterations, or the method would diverge even with

eight sections in the approximation of each variable.

The convergence rates for velocity and the second adjoint

variable are shown in Figure 7.3. The figure was generated by

using an eight section approximation to the correct solution and a
convergence factor of 0. 33 for the first three iterations of the method.
The remainder of the iterations were run with a convergence factor

of 1.0 {(ordinary QL). The convergence factor of 0. 33 produces the

flat portions of Figures 7.3 and 7.11.

To simplify the convergence problem initial guesses were
made on the adjoint variables, These guesses were then integrated

19,20 When a

by a fourth order Runge-Kutta integration scheme.
guess was made that generated a solution near the optimal, then QL
was employed. In the application of QL a small convergence factor
was used on the first few iterations before switching to a convergence
factor, €, of 1.0. If the guess was far from optimal a new improved

guess was made.

The final trajectory for Case 1 is shown in Table 7.3, and
Figures 7.4 and 7.5. The final trajectory for the control bounded at
+ 22.5 degrees is shown in Table 7.4 and Figures 7.6 and 7.7. The
convective heating rates are compared in Figure 7.8, the sensed

accelerations in Figure 7.9, and the controls in Figure 7.10. The ..
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10°

P>

Note: The initial piecewise linear trajectory
_ corresponded with the true solution at
nine points on each variable.

NOTE:

THE INITIAL PIECEWISE LINEAR
TRAJECTORY CORRESPONDED
WITH THE TRUE SOLUTION

AT NINE POINTS ON EACH
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ITERATION
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CONVERGENCE RATE FROM A PIECEWISE LINEAR
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UNBOUNDED CONTROL
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convergence rate to the bounded control case from an approximate
solution generated by Runge-Kutta integration is shown in Figure

7.11.

The method outlined in Chapter 3 was employed to handle the
bounds on the control rather than employing either a penalty function
approach, or, Valentine's method. It can be seen by comparing
Figures 7.3 and 7.11 that the use of this method does not slow down

the rate of convergence.

Part of the reason for the small range of convergence be-
comes apparent when the transition matrix.is examined. The matrix

is shown in Table 7.5. It can be seen that the rows (or columns) are
very nearly multiples of each other. The ratio of the largest eigen-
value to the smallest is about 1014. The eigenvalues for the
transition matrices that arise is several different cases, are shown
in Table 7.6. It is seen that for forward integration the ratio is
worse (larger) than for backward integration. And that the bounded
control case is worse than unbounded cases which explains the more

severe convergence problems in the case of bounded control.
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-0.194894E 05
-0.616592E 00
-0.404747E-01
-0.404644E 01

TABLE 7.5
TRANSITION MATRIX

Case 1 — Forward Integration

Unbounded Control

ov ov ov ov
apl 8p2 8p3 80,c
9y oY oY 9y
Bp1 8p2 ap3 8ct
0§ 0§ 0§ 0§
Bpl ap2 8p2 <’9ct
8H 9H 8H 8H

_Bpl sz 8p3 act |

OR

0.260198E-00 -0.219472E-01 -0.256987E 04

0.819931E-05 -0.680890E-06 -0.369433E-01
0.537361E-06 -0.443860E-07 -0.197759E-03
0.768588E-03 -0.226645E-03 0.
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TABLE 7.6
TRANSITION MATRIX EIGENVALUES

A A

Conditionsl Eigenvalues — 1 2 )'3 A4
Unbounded Control -.1949E5 | -.5336| .6612E-4 | -.1533E-9
Forward Integration
Unbounded Control
Backward Integration .1906E5 .5265|-.6721E-4 .1562E-9

o
22.5% Control Bound | y.q6p5 | _ 9806| .3605E-4 | -.1538E-10
Forward Integration
22.5° Control Bound
Backward Integration .1825E5 | -.38731-.9724E-4 .1502E-10
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CHAPTER 8

AL

SUMMARY AND CONCLUSIONS

o
[y
0
g
3
J
L]

The proof in Chapter 3 demonstrates that the modified
method for handling control directly will converge quadratically,
under the specified assumptions, to the final solution. This allows
the method of quasilinearization to be applied to problem involving
bounded continuous control without having to turn to additional multi-

pliers or a penalty function approach,

The method for extending the range of convergence of the
method given in Chapter 4 has proven its worth many times over in
the application of quasilinearizé.tion to practical problems. It is of
particular importance since finding the initial guess can be a major

part of getting a solution.

The Brachistochrone was used as a test problem to evaluate
the effectiveness of Method 3 of Chapter 4 (see Figures 6.6 and 6.7);

to show how the use of a numerical approximation to the part‘ial

derivatives effected the rate of convergence (see Figure 6.2) and for
other tests of the theory. It can be seen fro‘rn the mentioned figures
that the method of Chapter 4 provides an effective way to extend the
range of convergence and that numerically approximating the partial
derivatives neither slows down the rate of convergence nor does it
effect the terminal accuracy. The Brachistrochrone was also used
to demonstrate that the method of an undetermined time scale is a
far more efficient technique for solving the problem of an unde-

termined final time than that presented in the literature.

The method was applied to find the trajectory that minimizes

the convective heating in a reentering space vehicle to see how the
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method behaved on a complex engineering problem. It was on this
complex problem that the method of Chapter 3 was applied to find

the trajectory for the case where the control was bounded as well as

unbounded. The fact that there is no difference in the rates of con-
vergence can be seen by comparing Figures 7.3 and 7.11, and

proves that the method of Chapter 3 is indeed of practical importance
for continuous control problems. Kopp and Moyer11 stated that

other ways of handling control bounds with QL are not straightforward

which the method of Chapter 3 is.

The method of quasilinearization has been shown effective in
the solution of complex engineering problems where the control can-

not be eliminated from the problem itself.

8.2 Comments of the Method of Quasilinearization

The method of quasilinearization is a useful tool in solving
the two point boundary value problem that grows out of most optimi-

zation techniques.

Despite its advantages of programming ease, computational
speed, and rapid convergence, 1 it does suffer from two main de-

fects. The first, it shares with all other quadratic methods and that

is the small range of convergence. For most problems of signifi-
cance the method will not converge, even with the method of Chapter
4, from a purely arbitrary initial guess on the values of the state
and adjoint variables. The second difficulty arises out of and com-
pounds the first. If the method does not converge the user of QL is
no wiser than he was before. That is to say that because the method
obeys only an approximate differential equation, the numbers ob-
tained from a divergent solution give few clues as to what the next

initial guess should be like.
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Once a convergent solution is obtained it is very easy to vary a

parameter and to see how the solution changes. Little difficulty has
been found in staying in a rapidly convergent region while making
studies of parameters, such as observing the effects of different

control bounds in the reentry example.

8.3 Conclusions

Quasilinearization has been demonstrated here to be a
powerful technique for solving engineering problems that are complex
and sensitive at the same time by its ability to solve the reentry
vehicle trajectory problem. Modifications to the method worked well

in solving the same problem when bounds were placed on the control.

There are two main areas for future research on this method.
The first is the extension of the proofs of Chapters 3 and 4 to first
order ordinary nonlinear differential equations with boundary con-
ditions at both ends. Without this step the theory cannot be regarded
as complete as, while second order equations can be expressed as

first order ones, the converse is not always true.

The second area is the extension of the method to handle

jumps whether they be in the state variables, the adjoint variables,

or the control. Without this extension the method cannot be applied
conveniently to the class of problems where bounds are placed on

the states.
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APPENDIX A
COMPLETE REENTRY EQUATIONS

Abbreviations:

CD = CDO +CDL cos u

CL = CLO sinu
- -BRE
P=pr.c
Equations of motion:
2 .
v o= - Spv c_ - g siny
- 2m D (1+§)2
. Spv V cosy g cosy
¥y = C_+ -
2m L R(1+&) v(1+§)2
. v siny
$= =x
;, _ Vvcosy
14§
Hamiltonian:
1
% 12.5
_ 3/p\? 3/2 v B
H=ocv (N) *7.5kNp (10000)
+

2 .
p. |- Spv c_ .. gsiny
1 2m D (1+§)2

Spv vcosy gcosy v sinvy
t Py ( om L T R(1+E) v(1+§)2)+p3 R

vV cos ¥y

* Py 1%E)

.Criterion Function:

k = 0 for no radiative heating, k = 1 otherwise.

91



Adjoint variables:

11.5

: 1
2 3/2
b =f =- 3CVZ(BN) _93.75kNp° 2 ¥

1 5 (10000)12.5

Spv Sp cos ¥y g cosy
2PV ¢ -p. (2= cC, +
+Pm Cp P2 (2m CLtram*? Zoen)?

siny _ cos vy
P3 R Py 7148

b, = f,=+p, £ 4 z(g(slljg) : gsm;)
: (14€) v(1+4§)
vV cosy v siny

Ps— R ‘tPy T1if

gr( 3/p\2 3/2 12.5
by =£,7 <55 \ov (3N> +22.5Nkp ( v

7 2 10000
BRS vz 2g sin
P \Tom— Cp ¥ £t
(1+8)

+p(BRSpv c 4 YoosY | 2gcos'y>
2\ 2m "L opaap? v(148)°

Control:

The control is found from

oH _
au 0
and
a%H < Cpr P2
5 0 so tanu = - -C—————-—v
du , LO Pi
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Partial Derivatives

The following simplifications are employed

af (v, u) of, of
ivwsr i, i _ du
dy. T 9y, ou 9y,
}’J ,YJ )’J
Now
afi - 0 i=1,4
ayi j=5,8
and
Bfl - afJ_4 i=5,8
oy ayi_4 j=2b5,8
With

8f1 - Spv C
ov m D
of
- g cosvy
o (148
af1 BRSpv C. + 2g siny
o§ 2m D (1+§)3
R
at
of
- Sp c 4+ _SosY g cosy
ov 2m L R(14§) 2(1+E)2
of . .
2 __ vsiny g siny
oY R(1+%) v(1+§)2
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2 BRSpv vV cosy g cos;y

98 T T 2 b T2t T 3
m R(1+£) v(14E)

?.f_z_. =0

19
6f3 - sinvy

ov R
af3 _Vvcosy

oY R
¥

og
?..f_:}_. =0
o¢
8f4 _ Cosvy

ov 14§
af4 _ _Vvsiny

oy - 1+§
af4 . _Vvcosy

9 2

S s
¥

a¢
of 3 10.5
T‘r’— = - Bev BN) - 107.8125 kNp°'? L

v (10000) °"

Sp 2g cosy
+p,— C,+p 3 5
1 m D 2 v3(1+E)

of

S .

oY

sin 2¢g sin cos vy
'pz( Y g siny ) + b,

R(14£) +v2(1+€)2 R
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of / 3 11.5
5 2 2
8-§~—=+1.5BR<CV <Tfr") +93.75 kNpS/z—"——m>
(10000)"
—~ /
_ BRSpv C_ 4+ BRSp cos ¥
1" m D" Po\Tom “~L 7 R(13%)
+ 22g cosyB) +p4 cos'y2
v (1+§) (14€)
31‘5 o
of
afﬁ - p (sin'y 2g siny\ cosy
ov 2 {R(1+8) v2(1+§)2 3 R
of .
6 _ _ g siny +p (v cosy gcos'y)
oy 1 (1+§-)2 21R(1+E) v(1+§)2
v siny v cosy
*P3 TR 4 TI4E
of . . .
-6 _ 2g cos ¥y v sinvy 2g sinvy sinvy
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APPENDIX B

REENTRY PROBLEM CONSTANTS

Air density at sea level

Po

Air density exponential
constant 8

Earth Radius
R

Frontal area of vehicle

S

Mass of vehicle

m

Radius of vehicle nose
N

Convective heating

Radiative heating

Control Constants

0

DL

it

Case 1 Case 2
32.172 32.172
.2704x10°%  0.23769x10"
0.426x10 % 0.4255x10
20. 9x10° 20.035
1.064 1.0
2.0 2.0
4.0 4.0
0.2x107" 0.2x107"

0 7.5x10 >0
1.174 0.88
-0.9 0.52
0.6 -0.505
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Units

ft /sec2
slug/ft3
1/ft

ft

ft
slug

ft

BTU sec
3 I
ft” 1b*

BTU sec1 1.5

£t 15.5




